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LQR CONTROL OF THIN SHELL DYNAMICS: FORMULATION AND NUMERICAL

IMPLEMENTATION

R.C.H. DEL ROSARIO* AND R.C. SMITH t

Abstract. A PDE-based feedback control method for thin cylindrical shells with surface-mounted

piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and

active piezoceramic patch contributions arc used to model the system dynamics. The well-posedncss of this

model and the associated LQR problem with an unbounded input operator arc established through analytic

scmigroup theory. The model is discrctizcd using a Galerkin expansion with basis functions constructed from

Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate

LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal,

circumferential and transverse shell displacements is illustrated through a set of numerical examples.

Key words. LQR method, PDE thin shell model, Galerkin approximation, piezoceramic actuators

Subject classification. Applied and Numerical Mathematics

1. Introduction. Thin shell models are used to characterize structural phenomena ranging from wing

vibrations to deformations in a duct due to an adjacent flow field. In full generality, shell equations can be

used to model structures with variable curvature and irregular geometries. Furthermore, the models can be

modified to incorporate a large variety of actuators and sensors and can be coupled with adjacent acoustic or

fluid fields to model coupled systems. In all cases, the displacements of various shell components are coupled

due to the curvature and geometry.

We focus here on cylindrical shell models due to their prevalence in applications (e.g., noise control

in a fuselage or flow control in a flexible pipe). For specificity, we consider surface-mounted piezoceramic

actuators due to their capability for both sensing and actuating. Their applicability is enhanced by the fact

that their response is relatively linear at low to moderate drive levels. F_rthermore, they are lightweight,

space efficient, and can be manufactured for various geometries at reasonable cost. We note that while

the control methods discussed here are specific to surface-mounted piezoceramic actuators, the techniques

can be directly extended to embedded piezoceramic actuators as well as electrostrictive or magnetostrictive

actuators which have been restricted to output levels which are approximately linear.

While experimental work has demonstrated the potential of piezoceramic actuators in cylindrical shell

applications [13, 25], their full potential is typically not realized due to limitations in hardware, models,

approximation mcthods and control laws. One source of difficulty when approximating shell dynamics and

designing model-based controllers is due to the mechanisms which provide the models with much of their

flexibility, namely the coupling between shell components. The physical coupling due to geometry and

*Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695 (rcdelros@eos. ncsu. edu).
tDepartment of Mathematics, Iowa State University, Ames, IA 50011 (rsmith_iastate.edu). This research was supported

in part by the National Aeronautics and Space Administration under NASA Contract Numbers NAS1-97046 and NAS1-19480
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curvatureleadsto asignificantinterlacingoffrequencies(e.g.,asillustratedin [12],it iscommonincertain
regimesto havetenor morelinearlyindependentmodeswithin a 10Hz range). Thisplacesstringent
requirementsontheaccuracyofapproximationmethodsandtheabilityof thecontrollerto avoidspillover
of energyintounmodeledmechanisms.

Onemeansof approximationin structuralapplicationsis throughmodalor eigenfunctionexpansions.
Becauseanalyticexpressionsforeigenfunctionscanbedeterminedonlyforveryrestrictiveboundarycondi-
tions(e.g.,simplysupported)forshellswithconstantmaterialparametersandhencenoactuators,sensorsor
couplingcomponents(normalmodesdonotexistforshellswithpiecewiseconstantparameters[6]),approxi-
mationtechniquesorassumedmodalexpansionsmustbeemploycd.Thccouplingandconsequentinterlacing
offrequenciesplacesstringentrequirementsontheaccuracyofapproximationmethodsorchoiceofassumed
modalbasis.Theeffectsof couplingmustalsobeconsideredwhendesigninga feedbackcontrolmethod
whichemployspiezoceramicpatches.Forexample,thetightcouplingandsubsequentfrequencyinterlacing
cancauseamodalcontrollerconstructedsolelyforresolutionof uncontrolleddynamicsto experiencescvcrc
spilloverintouncontrolledmodesuponapplicationof thecontrolinput.Thismotivatesthedevelopmentof
amoregeneralmodel-basedcontrolmethodforshellapplications.

In thispaper,weconsideranLQRfull statefeedbacklawfor cylindricalshellsmodeledbyDonnell-
Mushtariequationsmodifiedto accountforactuatordynamics.Anapproximatefeedbacklawappropriate
for numericalimplcmcntationisdevelopedin thecontextof a Fourier/spline-basedGalerkinmethod.The
Donnell-Mushtariequationscharacterizethecouplingandphysicsinalargenumberofthinshellapplications.
Furthermore,theanalysisandapproximationmethodsdevelopedin thiscontextcanbedirectlyextended
to moreaccuratemodels(e.g.,Byrne-Flfigge-Lur'yemodel)if theapplicationwarrants.Theconsideration
of LQRperformanceillustratespropertiesof thcsystemandmodel-basedcontroltechniquesandfacilitates
investigationsregardingissuessuchaspatchnumberandconfiguration.Whilefull statemeasurements
arenotavailableusingcurrentinstrumentation,andhencethetechniquescannotdirectlybeimplemented
in experiments,theyprovideanimportantfirststepin thedesignofeffectivecompensatorsbasedonstate
estimatescalculatedusingalimitednumberofobservations(see[10]).TheconsiderationoftheLQRproblem
alsoprovidesasteptowardthedevelopmentof model-basedcontrollersforfully coupledstructuralacoustic
andfluid/structuresystemsinvolvingcylindricalshells.Asdetailedin [12],the Galcrkinapproximation
methodemployedhereis flexiblewith respectto boundaryconditionsandfacilitatesconsiderationof the
distributionalderivativeswhicharisethroughthe inclusionof patchcontributionsin themodel.It also
providestheaccuracyrequiredto resolvedynamicsin thefully coupledmodel.Froma controlperspective,
theuseof thegeneralsplinebasiseliminatesthetendencytowardspilloverintounmodeledcomponentsof
thesystem.Furthermore,theapproximationmethodsatisfiestheadjointconvcrgcnccandmaintenanceof
uniformdecayboundsrequiredforconvergenceofcontrolgains.Thisenhancestherobustnessofthemethod
in avarietyofapplications.

Wenotethat additionaltheoryconcerningstabilizationandfeedbackcontrolof thin shellsfroma
PDEperspectivecanbe foundin [17,18,22]. Furthermore,analternativeframeworkfor establishing
theconvergenccof controlgainsfor the abstractoperatorformulationis givenin [16,19]. Bothsetsof
referencesaretheoreticalin nature,however,anddonotprovidenumericalmethodsorsimulationresults.
Thedifferenceandprimarycontributionof thispaperliesin thecomprehensivetreatmentoftheproblem
in a frameworkwhichincludesmodeldevelopmentandwell-posednessanalysis,a rigorousLQRcontrol
formulation,incorporationof anefficientnumericalmethod,andnumericalexamplesdemonstratingthe
scopeofthemethod.



Strongandweakformsof thethe thin shellmodelarcsummarizedin Section2. Thesemodelsarc
obtainedthroughmodificationoftheclassicalDonnell-Mushtariequationsto incorporatepassive(material)
andactive(actuator)contributionsdueto thepatches.Themodelisalsoposedin anabstractformbased
uponsesquilinearformsto providea frameworkamenableto establishmentofmodelwell-posednessandde-
velopmentofanLQRmethod.InfinitedimensionalLQRmethodsforsystemswithnoexogenousdisturbance
or systemswithaperiodicdisturbancearediscussedin Section3. In bothcases,unboundedcontrolinputs
resultdueto thepiecewisesupportof thepatches.Forthecasewith noexogenousdisturbance,criteria
guaranteeingtheconvergenceofapproximatesuboptimalgainsto optimalgainsfortheinfinitedimensional
systemareestablishedthroughapplicationofanalyticsemigrouptheory.TheFouricr/spline-basedGalerkin
methodof [12]is outlinedin Section4, andnumericalexamplesdemonstratingthe controlmethodarc
presentedin Section5. Theseexampledemonstratesthat throughtheuseof themodel-basedmethodol-
ogywithgeneralGalerkinapproximations,significantattenuationin shellvibrationscanbeobtainedusing
piezoceramicactuators.

2. PDE Model. Throughoutthis discussion,weconsidera cylindricalshellwhoseradiusis large
in comparisonwith thethickness(see[15,21]for detailsregardinglimitsonratios). In accordancewith
commonexperimentalclampingtechniques,theedgesaretakento befixedin thesensethat longitudinal,
circumferentialandtransversedisplacementsalongwith transverseslopesareheldfixed. Control is pro-

vided by surface-mounted piezoceramic patches which are configured in pairs with edges aligned with the

circumferential and longitudinal axes of the shell.

To specify the geometry for the model, the longitudinal axis of the shell is taken to bc aligned with

the x-axis as depicted in Figure 1. The length, thickness and radius of the shell are respectively denoted

by _, h and R while the region occupied by the middle surface is denoted by F0. The shell is assumed to

have mass density Ps, Young's modulus E, Poisson ratio v, Kelvin-Voigt damping coefficient co and air

damping coefficient #. Note that the assumption of Kelvin-Voigt damping is reasonable and typical for

many shell materials such as aluminum. Finally, the external surface forces are denoted by _, q0, qn while

the displacements of the middle surface in the longitudinal, circumferential and transverse directions arc

denoted by u, v and w, respectively.
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Figure 1. Thin cylindrical shell with surface mounted piezoceramic patches.



It isassumedthat s pairs of piezoceramic patches having thickness hp_, density pp_, Young's modulus

Ep_, Poisson ratio Up_ and Kelvin-Voigt damping coefficient co,. are mounted to the inner and outer surfaces

of the shell. Furthermore, it is assumed that the glue bonding layer provides negligible contribution to thc

structural dynamics (the reader is referred to [8, 10] for details concerning the incorporation of differing

patch characteristics and bonding layers in the ensuing models).

2.1. Strong Form of the Modeling Equation. The dynamics of the previously described thin

cylindrical shell with surface-mounted piezoceramic actuators are modeled by the modified Donnell-Mushtari

equations

(2.1)

Rph-o-_a2u - R ON_ax ONe_oO= ROx - R Ox Sp_, (x, 0)
i=l

0% ONe
Rph-_g aO R y_° = ROo - _ 0(Y_)p_, Sp_,(x, 0)

Ox 00
i=l

02w Ow _ R O2M_
Rph-o- _ + R#--_ Ox 2

1 02Me 2 02M_e
R 002 _ + No

= ROn - _ [R 02(M_)P_' 1 02(Me)p_, ]
_=1 L Oz2 + R _ J "

As detailed in [8, 10, 21], equations of this type are obtained through force and moment balancing with

only low order terms retained. Here Ms, M0, M0_ and M_0 are internal moments, Nx, No, Nox and Nx0

denote internal force resultants, and (Mx)p_,, (Mo)p_,, (N_)p_,, (Na)pe, designatc the external resultants (line

moments and forces) generated by the i th patch pair. Thc indicator function

where

s,,_, (_, 0) _ &,= (x) &,=(0),

1 , X < (Xli -]- X2i)/2 f 1 , 0 '_ (Oli "t- O2i)/2&a(z)= 0 , z=(x_i+z_)/2 , S_a(0)=/ 0 , 0=(0u+0=d/2 ,
-1 , _>(_l_+Z=d/2 -1 , 0>(0_,+02d/2

delineates the sense of the forces generated by the i th pair. The symmetry of the function arises from the

property that for homogeneous patches having uniform thickness, equal but opposite strains are generated

about the point (ei, 0i) = ((xli + X2i)/2, (01i nu 02i)/2).

The composite density p consists of the shell density p, in regions devoid of patches and a linear combi-

nation of p, and the patch density ppe in regions covered by patchs (see [10] for details). Hence p is piecewise

constant with discontinuities at the patch edges.

Expressions for the internal force and moment resultants are derived under the assumption that stress

is proportional to a linear combination of strain and strain rate. This yields a model which incorporates

Kelvin-Voigt or strong internal damping. As detailed in [8, 10], the resultants N_, N_o, No=, M_, M_o, Mo_



derived under this assumption are

(2.2)

N_

Nxo

Eh _ 2Ep_hve

1 -_2 (ex + veo) + E 1-- _2"--_(ez + vpeeo)Xpe,(X,O)
i_l

CDh s 2CDp_hpe

i=1

NO _ -- Ehv) eze + (1 + Vpe) cxeXpe'(x'O)
2(1 + i=1

s CDp_ hpe

4 2(1 + u) e_° i=1

and

(2.3)

M_

Eh 3

12(1 - v 2)
2Epea3(_+-_0)+ 3_i=_) (_+_0)_o,(_,0)

i=1

CD h3 _ 2CDp_a3

i=1

Eh 3

M_o = Moz - 24(1+v)
Epea3+ 3(1 + _,_)Tx,_,(x,o)

i=l

CD h3

24(1+ _,)
CDp_a3 i'Xp e. ix, 0).

/- + 3(1 "[- Upe ) '
i=1

The constant a3 -- (hi2 + hp_) 3 - h3/8 results from integration through the thickness of the patch while the

characteristic function

1 , xli < X < X2i , Oli< 0 < 02i
xp_,(z,0) = - - - -

0 , otherwise

delineates the region covered by the i th patch pair with edges at Xli,X2i, Oli,02i. Expressions for the

resultants No and Mo can be obtained by replacing e_, e0, _%, _0 in the expressions for N_ and M_ by

eo, e_, _0, _, respectively. As detailed in [8, 10, 21], the midsurface strains and changes in curvature for the

Donnell-Mushtari model are

(2.4)

Ou 10v w Ov 10u

_ = o--; ' _o= -_o-_+ -R ' E_o= _ + -_N

02w 1 02w 2 02w

t_x - Ox 2 , t_o - R2 O02 , r - R OxO0 "

Note that for the undamped shell which is devoid of patches, substitution of the strain and curvature

expressions (2.4) into the resultant equations (2.2) and (2.3) yields the classical Donnell-Mushtari expressions



N_--(1--_2) _+_ gg+w ,

Eh [ 10v w Ou]No-- (1:_2) [_-_A-_A-V_x x ,

M_- 12_--;_) LOx:_+if" N-_J

(e.g., see [21]).

-Eh 3 [ 1 02w O_w]

Mo - 12_--;,_) [_ 00_ + _'_x_j

1Nzo = Nox -- 2(l+v) Oxx + R OO J ' M_o = Mo_ = 12R(l+u) OxO0

The necessity of including the passive (material) patch contributions in the density and moment and

force resultants for the combined structure is discussed in [10]. While the passive patch contributions may bc

ncgligiblc in some cases, it is well documented that for many currently employed control configurations, the

structural dynamics are sufficiently altered by the presence of the patches so as to yield inadequate model

fits if the patches arc neglected. Experimental results demonstrating this effect for circular plates can be

found in [7, 10] while independent experimental confirmation for rectangular plates is given in [14]. Purthcr

analysis for thin shells is provided in [27]. The numerical examples in Section 5 of this paper illustrate that

the control method is equally applicable when passive patch contributions are neglected or included and

hence is effective when their passivc contribution is significant.

To characterize the external or active patch contributions, it is typical to start with the assumption that

the strains generated by a patch are proportional to the applied voltage [8]. Since differing voltages can be

applied to the outer and inner patches in the pair, we will differentiate between the two with Vii (t) and Vi2(t)

used to denote the voltages to the outer and inner patches in the i th pair, respectively. The proportionality

constant relating the generated strain to the input voltage is designated by d31. As detailed in [8], the total

external moments and forces generated by the patches are

(2.5)

-Ep_ d31 a3

-Epe d31a2 r.T
(Mo)ve, = £=-_p " -_pe _P e'[Vil -- Y/2 ]

(N*)ve' = [----_pe " hpe '

(No)p_, -- 1 - uv_

where a2 = (h/2 + hw) 2 - h2/4 and a3 = (h/2 + hp_) 3 - h3/8. When substituted into (2.1), the expressions

(2.5) provide the input from the patches when voltages are applied. We point out that the characteristic

functions Xp_, restrict the external patch resultants to the region covered by the i th patch pair.

The fixed-edge boundary conditions

dw

(2.6) u=v=w- Ox -0 , x=O,g

are used to model the cnd behavior of the shell. These boundary conditions are appropriate for experimental

setups in which heavy endcaps prevcnt edge movement. Note that alternative boundary conditions such as

simply supported or "almost fixed" (see [9]) can be employed if edge movement is suspected.



Weconsidertwosetsofinitial conditions.Forgeneralsystems,the initial conditionsarespecifiedas

u(0,x) = u0(x) , v(0,x) = vo(x) , w(0,_) = _0(_).

To model the long-term dynamics of systems driven by a periodic exogenous force g with period r, we also

consider the periodic conditions

u(0, x) = u(r,x) , _(0, x) = _(r,_) , _(0, _) = _(_, x).

2.2. Weak Form of Modeling Equations. The internal and external moment and forcc resultants

(2.2), (2.3) and (2.5) are discontinuous due to thc presence of the piezoceramic patches. When incorporated

in the strong form of the shell model (2.1), this leads to problems associated with the differentiation of

Dirac distributions. To alleviate these difficulties and reduce smoothness requirements on solutions, it is

advantageous to consider a weak form of the modeling equations which can be derived from Hamilton's

principle (energy considerations).

Thc state variables for the problem in second-order form are taken to bc y = (u, v, w) in the state space

H ----L2(F0) x L2(F0) x L2(Fo). For the fixed-edge boundary conditions (2.6), the space of test functions is

taken to be V = H_(Fo) x H_(Fo) x H2(F0) where

Ho1(Fo) = {r/E H 1(Fo)[ r/(O, O) = r/(g, O) = O}

H_(ro) = {r/e H2(r0)I r/(0,0) = r/_(0,0) = r/(t, 0) = r/_(e, 0) = 0}.

For ¢ = (u, v, w) and k9 = (r]l, rt2, r/3), the H and V inner products are taken to bc

and

((E, G¢)¢, @)v

s I ]}+ y_ 2Ep_hp_ ,0711 c%11
,=1 ¥: _'g----:x.,(_,o) (¢. + _,._¢o;-G-x + (1 - _,,o)_.o-_- d-y

+

+



where¢x,c0, ¢x0, nx, n0, v are defined in (2.4) and d7 = RdOdx. The dependence of the inner product on the

Young's moduli is explicitly included in the definition to provide a notation for defining analogous damping

expressions later in this work.

The weak form of (2.1), as derived in [10] from energy principles, is given by

( 02u -- N" Or1
oIRphot-----ffVl+RNx +Nox -ROx_I-R_-'( _=1 x)Pe' -_-x dT=0

fro f 02v + RN_o _x+ No-_-i Rph _ _ 2 Or_ s o)
i=l

(2.7)

fr f 02w Ow 02ru 1 02rl_ 02rla
o i Rph Ot----g-_3+ R#-_3 + No_3 - RM_ _ -_Mo-_ - 2M_o--oxO0

s[ o.1}-n0,_3+_--_ n(M_)p,,-O_x2+_t 0)pc,-0-- _ dT=0
i=1

for all • = (rh, _, 773) E V. A comparison between (2.7) and (2.1) illustrates that in the weak form, deriva-

tives are transferred from the discontinuous resultants onto suitably smooth test functions. The problem in

this form is then amenable to analysis and approximation.

2.3. Abstract Formulation. To provide a natural framework in which to establish model well-

posedness and infinite dimensional LQR control methods, we consider an abstract formulation of the model

based upon stiffness and damping sesquilinear forms. To this end, we define a, : V x V ---, (I?, i = 1, 2 by

(2.8)

O'l(O ,II]) ---_ ((E, Epe)(_, _)V

a2(O, ¢) = ((co, CD,.)O, _)Y + fr #w_3dT"
o

Note that ((cD, CD,.)¢, _}V differs from ((E, Ep,)¢, k_)v only in that Young's moduli are replaced by Kelvin-

Voigt damping coefficients. It can be directly verified that the stiffness form al satisfies

(H1) lal(¢, _)[ _< Cl[¢[vlq[v , for some cl • IR (Bounded)

(H2) tleal(_,_) > c21_51_ , for some c2 > 0 (V-Elliptic)

(H3) al (¢, q) = al(@, O) (Symmetric)

for all ¢, • • V. Moreover, the damping term a2 satisfies

(H4) ]a2(O, O)l -< cal¢]vI_Iv , forsome c3 • lit (Bounded)

(H5) Rea2(¢,¢) > cal_l_ , for some ca > 0 (V-Elliptic).

Remark 1. The symmetry of al is dependent upon the choice of shell model and ultimately reflects the

Maxwell-Betti reciprocity theorem. While the Donnell-Mushtari model yields a symmetric sesquilinear form

al, other models such as the Timoshenko shell model will not yield a symmetric form.



Thecontrolinputspaceis takento bctheHilbcrtspaceU -- IR2_ and for • E V, the input operator

B E £(U, V*) is defined by

(Bu(t), q2)y.,y = (N_)p_, _x + -R( e)p_, OO
oi=1

8273 1 " 02r/3 /-(M_)p_, Ox2 R2(Me)pe, _ dr
}

where (., ")y*,y denotes the usual duality product. With the definition _ = (1/ph)[Ox, 00, q,_], we can write

the weak form (2.7) in the abstract variational form

(2.9) (/)(t), _)..,v + o2(9(t), ,_) + ,_l(y(t), ,_) = (Uu(t) + _(t), '_)v.,..

To pose the problem in a first-order form amenable for control applications, we define the product spaces

7-/= V x H and V = V x V with the norms

I(¢1, ¢2)1_ = I¢11_+ I¢21_

1(¢_,¢2)t_= I¢11_+ 1¢21_.

The state is taken to be z(t) = (y(t), il(t)) E Tl while the product space forcing terms are formulated as

(2.10) g(t)= 0(t) ' Bu(t) "

The second-order system (2.9) can then bc formulated in the first-order form

(_(t), A)v.,v + a(z(t), A) = (Bu(t) + 9(t), A} v.,v for A • Y
(2.11)

z(0) = zo = (vo,yl)

where a : V x "P _ C is given by

_(¢, ¢) = - (¢2, ¢_)v + ol (¢_, ¢2) + _2(¢2, ¢2)

for ¢ = (¢1, ¢2), ¢ = (¢1, ¢2) • V. As proven in [10, page 109], a is ]2 continuous and for & > 0, a(., .) +

A (-,-)_ is ])-elliptic. From the continuity of er, it follows that one can define an operator .A • L:(1), l)*) by

a(T, A) = (AT, A)v.,v.

To obtain a strong form of the first-order system (2.11), consider the system operator

domA = {(¢1, ¢2) • 7_1¢2 • V, A1¢1 + A2¢2 • H}

(2.12) .4-- [ 0 I ]-A1 -A2

with A1, As • [_(V, V*) defined by

(Ai¢l, ¢2)v.,y = ai(¢l,&Z) , i = 1, 2 .

It should be notated that A is the negative of the restriction to domA of .A • £(V, V*) so that a(T, A) =

(-.AT, A)n for T • dom,4, A • _). A strong form of the abstract system model is then given by

_(t) =.Az(t) + Bu(t) + g(t) inV*=YxY*
(2.13)

z(0) = z0.

The rigorous equivalence of solutions is established through the following theorems.



Theorem1. UnderHypotheses(H1)-(H5)on_1anda2, _ generates an analytic semigroup T(t) on V, 7-/

and V*. In terms of this semigroup, the representation

(2.14) z(t) = T(t)zo + T(t - s)[13u(s) + g(s)lds

defines a mild solution to (2.13) for z0 6 V* and Bu + g 6 L2((O, T); V*). Furthermore, this semigroup is

(uniformly) exponentially stable on V, 7-/and )2*.

Theorem 2. Let zs9 denote the semigroup solution to (2.13) given by (2.14) and let z.a_ denote the weak

solution to (2.9). Under hypotheses (H1)-(H5), it follows that zsg(zo,_) = z,a_(zo,i_) for z0 6 7-/ and

Jr-- Bu + g 6 L2((O,T); V*).

Following the convention of [28], we will use the same notation for the semigroups defined on V, 7-/and ]2*

since each semigroup is an extension or restriction of the others. Note that domA defined in (2.12) is actually

dome.A, the domain of .A as a generator of T(t) in 7-/. As detailed in Lemma 3.6.1 and Theorem 3.6.1 of [28]

(see also Section IV.6 of [24] and Chapter 2, Theorem 5.2 of [23 D, the property that .4 generates an analytic

scmigroup on )2, 7-/and ])* results from the continuity and V-ellipticity of a. The exponential stability of 7"(t)

on 7-/for second-order systems with strong damping is demonstrated in [4] while the exponential stability

of T(t) on ]) and ]2* in this setting is proven in Lemma 3.3 of [5]. Finally, Theorem 2 is a reformulation of

Theorem 4.14 of [10] and details can be found therein.

Remark 2. The previous analysis applies to general ])*-valued forces with states having initial values

z0 6 ])*. In many applications, disturbances are generated by rotating or oscillating components in which

case it is reasonable to assume that g is periodic. The long-term behavior of the system then satisfies the

abstract Cauchy equation

(2.15) _(t) = .Az(t) + Bu(t) + g(t)

z(O) = z(_).

in )2* where T is taken to be commensurate with all frequencies present in the disturbance g.

3. Approximation Problem. For implementation purposes, we consider Galcrkin approximations to

obtain trajectories which evolve in finite dimensional subspaces ])_ C ]) C 7-/. To guarantee convergence in

the subsequent control problem, we assume that the approximation method satisfies the standard convergence

condition

(H1N) For any z 6 )2, there exists a sequence 5 N 6 ])Y such that Iz - _NIv --* 0 as N --_ co.

In this framework, the operator .AN : ])N _ ])N which approximates .4 is defined by restricting a to ])N X ])N

to yield

(3.1) <-.ANT,A>u = a(T,A) for all T,A 6 ])N .

For each N, the Co semigroup on ])Y which is generated by .AN is denoted by "fiN(t). The control operator

is approximated by B m 6 £(U, ])m) given by

(3.2) (BNu, A)u = (u,13*A)v for all u • U, h • yN.

10



Finally,welet pN denote the usual orthogonal projection of 7-/onto V N which by definition satisfies

(i) PNT•V y forT•_/

(ii) (PNT-T,A}_=0 for allh•V N.

This projection can bc extended to pN • /_(V*, )2N) by replacing the ?/-inner product (T, A)_ by the duality

product <T, A)v.,v and considering T • V*.

The approximate problem corresponding to (2.11) can then bc formulated as

<_N(t), A)_ + a(zN(t), A) = <BYu(t) + pNg(t), h)_ for all A • V N

zN (O) = pN z o .

with the solution given by

£zN(t) = TN(t)pNzo + TN(t - s) [BNu(s) + pNg(s)] ds.

In strong form, the finite dimensional system has the form

_N(t) = -AN zN(t) + 13Nu(t) + 7_N g(t)
(3.3)

zN (O) = pN zo .

This system forms the constraint equations used in Section 4.1. A similar finite dimensional system approx-

imates the dynamics of the periodic system.

The exponential stability of the semigroup T(t) was established in Theorem 1. An important issue in

the subsequent control formulation concerns the uniform stability of the semigroup under approximation

and this is established in the following theorem from [5, 10] (see specifically Lemma 7.13 of [10]). The use

of the theorem for our shell system is illustrated in Example 1 of the next section.

Theorem 3. Assume that the injection i : V _ H is compact. It is also assumed that the damping

sesquilinear form can be decomposed as _r2 = 5al + &2, for some 5 > 0, where the continuous sesquilinear

form &2 satisfies for some )_ • IR

_2(¢, ¢) >- -5[¢[ 2-A[¢[_ for all¢•Re V.

< } = _(¢, _/), isFinally, suppose that the operator All.42, where -42 • £(V, V*) is defined by A2¢, _/ v*,y

compact on V.

If for some w • ]R and M > 1, T(t) satisfies

]T(t)[L(_) <_ Me _t t > 0

then for any E > 0 there exists an integer N_ such that for N > N_,

[TN(t)pN]c(n ) <_ M.e (_+_)t , t >_0

for some constant M > 0 independent ofN.

To obtain matrix representations for the finite-dimensional operators .AN, B N and gN it is necessary

to specify a basis for the approximating subspace V y. To exploit the tensor nature of the shell domain

11



F0andcircumferentialperiodicity,weemploythebasisdescribedin [12]whichisconstructedwithFourier
componentsin 0 and cubic splines in x. Specifically, the component bases for the u, v and w displacements

are assumed to have the form B_ (0, x) = eim°B_,j (x), Bv_ (0, x) = eim°Bv_ (x), and Bwk (0, z) = e_'_°Bw_ (x)

where B_,j, B.j and B_ are cubic B splines modified to satisfy thc boundary conditions. The approximating

sub@ace then has the form V N = span{B_,_ } × span{B. k} x span{B_k } and displacements are approximated

through the expansions

(3.4)

_N(t,0,x) = _ uk(t)_=_(0,x)
k--1

Af_

k=l

Af,_

wN(t, O, x) : _ wk(tlU=_ (0, x).
k=l

The restriction of a to V N and construction of the forcing vectors then yields the matrix system

g_0 0 0 ]M _ 0]_(t) -K_ --K_]_D 0"_'(t) E0] [0]+ &v [u(t)]+ _z(t)

0 M _ _(0) z_

where _(t) = [ul(t),. •., uN_ (t), vl(t),..., v_; (t), wl (t),---, wN_ (t)] T contains the A/" = Afu + Af_ + Af_

generalized Fourier coefficients. The s patch inputs are contained in thc vector u(t) = [ul(t),.--, u_(t)] T.

Thc reader is referred to [12] for details concerning the construction of thc mass, stiffness and damping

matrices M N, g_, g JV the inputs/3_, _-_'(t) and the initial conditions z_, z_.
C O '

Multiplication by the inverted mass matrix yields the Cauchy equation

(3.5)
_N(t) = ANzN(t) + BNu(t) +gN(t)

zN(O) = zo_ ,

where zN(t) = [_(t), _'(t)] T C IRN with N = 2A/'. Note that A N and B N are the matrix representations

for the operators .AN and B N in terms of the Fourier/spline basis while gN(t) is the projection of g(t).

We point out that the notation zN(t) designates both the time-dependent generalized Fourier coefficients

in ]RN and approximate solutions in V N. The specific usage is indicated by the context and the use of

finite dimensional operators or the corresponding matrix representations. Similarly, the control input u(t)

should not be confused with the longitudinal displacement u(t, x, 0). Equation (3.5) with gY(t) =-- 0 forms

the constraint for Example 2 in Section 5.

4. LQR Control Problem. As noted in (2.13) and (2.15) of the last section, the thin shell model can

be posed in the abstract forms

(4.1)
_(t) = .Az(t)+ _u(t) + g(t)

z(O) = zo

12



or

_(t) = .az(t) + _u(t) + g(t)
(4.2)

z(0) = z(_),

in V*, depending upon the periodicity assumptions on the disturbance and state. In this section, infinite

dimensional and approximating finite dimensional LQR control methods are developed for the system (4.1)

with g -= 0 and system (4.2) with periodic disturbance g and periodic end conditions.

4.1. No Exogenous Input. The infinite horizon optimal control problem for systems with no exoge-

nous input g can be posed as follows: determine the control u which minimizes the quadratic cost functional

(4.3)

subject to

_,(t) = Az(t) + _u(t)

z(O) = zo.

The nonnegative, self-adjoint operator Q = :D*:D E £(_/) can be specified to weight state components while

the positive, self-adjoint operator 7¢ = (T_l/2) 2 E £(U) serves to weight the control. In this case, T_ acts as

a soft constraint to prevent excessive voltages to the patches.

To guarantee the existence of a unique Riccati solution and an exponentially stable closed loop semigroup,

it is sufficient to require that (A, B) is stabilizable and (,4, 7:)) is detectable. Under these conditions, it is

established in [5, 10] that the optimal control minimizing (4.3) is given by

(4.4) _(t) = -7_-lB*Hz(t)

where H solves the algebraic Riccati equation

(A*H + HA - IIBT_-IB*H + Q)z = 0 for all z E "_

and 2(t) = $(t)zo. Here 8(t) is the closed loop scmigroup generated by .A - BT_-IB*H.

The corresponding finite dimensional problem concerns the determination of suboptimal controls u which

minimize the functional

#= +
subject to

_N(t) = AN zN(t) + UNu(t)

zN (o) -_ "pN zo

(see (3.3) with g - 0). The following theorem specifies conditions which guarantee the existence and

convergence of these suboptimal controls to the control (4.4) for the original infinite dimensional system.

This is Theorem 7.10 of [10]) and details can be found therein. The application of this theorem to the shells

system is illustrated in Example 1 which follows.

Theorem 4. Assume that the injection i : V _-* H is compact. Let the scsquilincar form a associated

with the first-order system (2.11) be continuous and Y-elliptic. Assume that the operators ,4, B, :D satisfy:
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(.4, B) is stabilizable and (,4, :D) is detectable where B E £:(U, V*) is unbounded. Considcr an approximation

method which satisfies (H1N). Finally, suppose that for fixed No and N > No, the pair (A N, B N) is uniformly

stabilizable and (A N, _)Y) is uniformly detectablc.

Then for N sufficiently large, there exists a unique nonnegative self-adjoint solution 1-IN E/_(12", )2) to

the N th approximate algebraic Riccati equation

AN'IIN + IIN AN __ IIN]3NT_-I]3N*II N + QN = 0

in V x. There also exist constants M3 >_ 1 and w3 > 0 independent of N such that the closed loop semigroup

sN(t) = e (AN-eNT_-I_N'nN)t satisfies

IsN(t)].N<_M3e -"_3t , t > O.

Moreover, the convergence of the Riccati and control operators

as N-*oc, is obtained.

IINTaN z A, Hz in V for every z E )2"

BN'I-IN_P N -- B*II _(_t,u) ---*0,

Example 1.

We consider in this example a shcll with constant parameters p, E, v, cD. Such a casc would arise if

modeling a homogeneous shell or a shell in which the variance of material properties across regions with

actuators is negligible. The sesquilinear forms for this model are specified in (2.8). Due to the constant

coefficients, a2 can be written as a2 = 5al + 82 where 5 = -_ and &2(O,_) = P f r0 w_?ad'y. It follows

immediately that

Re82(¢,¢) =. > - 10t 
o

for all ¢ E V. The boundedness of the operator -42 generated by &2 follows directly from the boundedness of

82. Furthermore, it is noted that A11 E £(V*, V) can be written as an operator on V _ V by A_ 1 -- A;li*i

where the injections i : V _ H, i* : H _ V* are compact. Thus A_ -1 is compact on V which implies that

All.42 is compact on V since it is formed from the product of compact and bounded linear operators.

Finally, the exponential stability of T(t), the stabilizability of (,4, B) and the detectability of (.A, 7)) are

guaranteed by Theorem 1. The hypotheses of Theorem 3 are then satisfied for this system and one obtains

uniform bounds on the approximating semigroups. The convergencc of the Riccati and control operators is

then obtained from Theorem 4.

Remark 3. Wc note that an alternative means of establishing the well-posedness of the closed loop control

problem and convergence criteria for suboptimal control gains is through the utilization of uniform analyticity

conditions for the semigroup T(t) generated by A as discussed in [16, 19]. For some systems with unbounded

input operators, such conditions are more readily verified than the requirements of uniform stabilizability

and detectability.
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4.2. PeriodicExogenousInput. Thesecondcaseunderconsiderationisthatinwhichtheexogenous
forceg models periodic disturbances such as noise generated by rotating engine components (e.g., propellers

or turbines) or periodic electromagnetic sources. Under the assumption that g is periodic in time, the

functional to be minimized is

J_(u) -- _ {IQz(t)l_ + IT_l/2u(t)l 2 } dt.

subject to (4.2). The endpoint _- is chosen to be commensurate with all frequencies present in g. The

theory for this case is less complete than that for systems with no exogenous input and is currently limited

to bounded control inputs B. Under the assumption that (,4, B) is stabilizable, (,4, 7)) is detectable and

g 6 L2(0, T; H), it is verified in [11] that the Riccati equation

A*II + HA + HBT_-IB*II + Q = 0

has a unique solution. Fhrthermore, if r denotes the T-periodic solution of the adjoint or tracking equation

÷(t) = -[,4- BT_- I B*II]* r(t) + ng(t)

r(0) =

and 2 is the closed loop solution of

_,(t) = [A - B_-lt3*n]z(t) - BT_-ll3*r(t) + g(t)

=

then the optimal control is given by

(4.5) a(t) = - -it3* [ri2(t) - r(t)].

For implementation purposes, the suboptimal control is computed through approximation techniques anal-

ogous to those described in the previous section for the system with no exogenous input. The theoretical

extension of the periodic theory for unbounded input operators B is currently under investigation. The

practical efficacy of the method in this regime is demonstrated through numerical examples in the next

section.

5. Numerical Examples. To illustrate the previously described control laws, wc consider in this

section several numerical examples which demonstrate the attenuation of shell vibrations using surface-

mounted piezoceramic actuators. The first example employs the feedback law described in Section 4.1 and

demonstrates the capability of the PDE-based controller for attenuating transient vibrations. The second

and third examples demonstrate the capability of the period feedback law developed in Section 4.2. The

shell is driven by a single frequency source in Example 3 while the attenuation in the case of a multiple

frequency input is demonstrated in Example 4.

For all three examples, the exogenous disturbance was constructed to model a periodic noise source

localized near the shell center at 0 = 0 and 0 = _r. To accomplish this, the surface forces were taken to bc

1
O_(t,x,O) = ]-_ q_(t)e-2°(z-_)20(O)

(5.1) 00 = 0

¢4t, x, o) =
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where

1 -- e -(6-_r/2)e/2 0 "_ 6 < 71"
e(6) = ' -

1 - e -(0-3_r/2)6/2 , 7r <_ 0 < 2_r.

Here • = £/2 denotes the axial center and q, (t) and q,_(t) designate the periodic temporal components to be

specified in the examples. The spatial components of the force distributions are illustrated in Figure 2. The

normal force in the x and 0 components can be interpreted as modeling periodic pressure sources adjacent

to the points (x, 0) = (2, 0) and (x, 0) = (_, _r).

Twelve pairs of piezoceramic patches were employed as actuators (hence s = 12 in (2.1) and (2.7)) with

two sizes considered; the large patches had dimensions of x -- 0.2, 0 -- r/3 while the smaller patches had

sizes of x = 0.1,6 = _r/6. As indicated in Figure 3, the patch pairs were configured in sets of three along

the lines 0 = 0, rr/2, 7r,37r/2. We reiterate that the voltages to the inner and outer patches in each pair

were independent so as to provide capabilities for generating both inplane forces and bending moments. The

dimensions and material properties of the shell and patches are summarized in Table 1.

To resolve the uncontrolled and controlled shell dynamics, the Fourier index m was taken from -4

to 4 for a total of 9 Fourier coefficients. The axial components of the longitudinal and circumferential

displacements were approximated using 13 modified cubic splines while 11 splines were employed in the

transverse displacement (two degrees of freedom are lost to accommodate the additional zero-slope boundary

conditions indicated in (2.6)). This yielded Afu --- Afv -- ll7,JV'w -- 99 in (3.4) and a total of N ---- 666

coefficients in the ODE system (3.5).

The important issues of patch number, placement and size fall outside the scope of this work and arc

under current investigation. The number of patches was fixed in these examples to facilitate comparison and

demonstrate the capabilities of the control method under uniform conditions.

0.6.

0.4.

0.2-

O,
1

0.6

0.4

Axial (1 m)
0 0

6

4 5

Circumferential (2 pl)

Figure 2. Spatial distribution of transverse and longitudinal forces (5.1) to the shell.
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\ 4 \\ 5 \\ L6\ \
'!L2

0-_

E1

2 3_ Pl

l ,o /j_ ,, jJ /,,,'i j

Figure 3. Configuration of large patch pairs 1-6 and 10-12. Pairs 7-9 are centered along/7 = r. Observation

lines L1 = {(x,9)[0 < x < _,0 = 7r/6}, L2 = {(x,O)lx = 3_/4,0 <_ 0 < 27r} and observation point

pl = (5, 0) = (3g/4, 7r/32). Configuration of small patches is similar.

Shell

Patches

Dimensions Parameters

h = .00127m

R=.4m

£=lm

hpe = .0001778 m

Centers (x,O):(.2_,0), (.S,0), (.75,0)
(.25,./2), (.5,./2), (.75,./2)
(.25,_), (.5,_), (.75,_)
(.25,3_/2), (.5,3_/2), (.75,3_/2)

Dimensions Large Patch: x : 0.2 cm, _ : 7r/3

Small Patch: x : 0.1 cm, O : 7r/6

p = 2700 kglm 3

E=7.1×1010N/m 2

c D = 1.47 × l0 s Nms

v = .33

# = 58.97Ns/m 2

Ppe = 7600 kglm 3

Epe = 6.3 × 101° N/m 2

CDp _ = 1.7 × 105 Nms

upe = .31

d31 = 190 × 10 -12 mlV

Table 1. Dimensions and physical parameters for the shell and patches.

Example 2.

We illustrate here the feedback law developed in Section 4.1 with no exogenous force. The shell was

initially driven for t = .01 seconds by the forces (5.1) with

lO007rt , 0 _< t < .01q=(t) = qn(t) = 0 , .01 < t < .05

at which point the forces were terminated and the shell was allowed to freely vibrate. The open loop response

at the point pl as well as the rms displacement values along the lines La and L2 are plotted in Figures 4 - 6

(see Figure 3 for the specific locations ofpl, L1 and L2). The rms plots illustrate standing waves in all three

components of the displacement.
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Figure 4. Uncontrolled and controlled shell displacements at the point pl with control initiated at t --- .01

using small patches as specified in Table 1; (a) longitudinal uN(t,_,O), (b) circumferential vN(t,&, 0), (c)

transverse wN(t, &,/_); _ (uncontrolled),------ (controlled).

Under approximation, the feedback law from Section 4.1 has the form

u(t) = --R-I(BN)THN zN (t)

where II N and zN(t) respectively solve

(AN)TIIN + IINA N + IINBNR-I(BN)THN + QN = 0(5.2)

and

_N(t) = [A N - BNR-I(BN)TI-I N] zU(t)
(5.3) ...............

zN(to) = ZO

(see (3.5) for the component matrices A N and BN). For this example, we neglect the passive patch contri-

butions and construct the system matrices using constant parameters p, E, u, CD. As indicated in Example 1,
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Figure 5. Uncontrolled and controlled shell displacements at the point pl with control initiated at t ----.01

using large patches as specified in Table 1; (a) longitudinal uN(t,_, _), (b) circumferential vN(t, ]C, _), (C)

transverse wN(t, :_, _); -- (uncontrolled), -- (controlled).

the convergence and exponential closed loop stability of control gains for this case arc provided by Theorem 4.

The passive patch contributions are then included in the final two examples.

The state and control weights were taken to be

T)(di) MA r , i= 1,2,3

R=Z)(ri) , i=1,...,24

where MAr and K{ denote the mass and stiffness matrices and :D(di),T)(d,),T)(r,) are diagonal matrices

whose i th component is di, di, ri, respectively. The simulations reported here were computed with the values

di =di = 1013 and ri = 50. Large values of di, di are not uncommon for such systems (e.g., see [2]) and

simulations have been run with values as large as di = di -- 102° without experiencing degradation due to
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conditioning.Finally,thechoiceofaweightedmassmatrixforthedesignmatrixQN is motivatcd by energy

considerations as detailed in [3].

Thc closcd loop dynamics of the shell were computed by numerically integrating the ODE system (5.3)

over the time interval [.01, .05]. The time history of the component displacements at the point Pl for the

smaller (.1, r/6) patches are plotted in Figure 4. Corresponding time trajectories with larger (.2, 7r/3) patches

are plotted in Figure 5 with corresponding rms values along the lines L1 and L2 plottcd in Figure 6. The

time histories illustrate that while substantial control is obtained with the smaller patches, the attenuation is

enhanced significantly through the use of larger patches. In this latter case, the vibrations in all components

are completely attenuated by time T = .015 seconds. The rms plots demonstrate that strong attenuation is

attained across the shell including regions not covered by patches. This illustrates both the capabilities of the

patches as well as the issues associated with patch size. The larger patches will be employed throughout the

remaining examples. Questions regarding patch size, placement and number are under current investigation.

x 104

2 r , , , , , , , ,

0
0 0.1 0.2 0.3 0.4 O.S 0.6 0.7 0.8 0.9 1
x 10 .7

Or,.-- J i i

10_ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

I-0 L._...-'_. . _- L _

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X 104

0 1 2 3 4 5 6
x 10"7

,Z3[ ' ' .... I

o ° , V , V
0 1 2 3 4 5 6
x 10.7

_'o k./ V , V , V ,
0 1 2 3 4 5 6

(a) (b)

Figure 6. Root mean square (rms) displacements with control using large patches; (a) axial line L1 and (b)

circumferential line L2;- (uncontrolled), _ (controlled).

Example 3.

The remaining examples illustrate the feedback law of Section 4.2 which accommodates a periodic

exogenous disturbance g. For this example, a single frequency 500 Hz temporal input

q_(t) = q_(t) = 100 sin(1000_t)

was employed in the exogenous forces (5.1).

The approximate control law for this case was computed in the following manner. The adjoint solution

rN(t) was computed by numerically integrating thc system

÷N(t) = - [A g - BNR-I(BN)THN] r rN(t) + IIN gN(t)

rN(r) = 0
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from the future time r back to the present (the Riccati solution satisfies (5.2)).

closed loop solution were then obtained via

(5.4) u(t) = -R-I(BN) T [HN zN (t) -- rN (t)]

and

The optimal control and

_N (t) = [A N - BN R-I( BN)TII N] zN(t) -- BN R-I(BN)TrN (t) + 9N (t)

zN(O)= o.

To illustrate the effects of passive (material) patch contributions, we consider two cases. In the first,

passive contributions are neglected, as in Example 2, and system matrices are constructed using constant

parameters p, E, v, CD. In the second case, all passive contributions are retained in the resultants (2.2), (2.3)

and density expressions, and hence are included in the system matrices A N and vectors B N, gN through the

inverted mass matrix.

The uncontrolled and controlled dynamics at the point p] for the first case are plotted in Figure 7 while

corresponding plots for the system which includes passive properties are given in Figure 8. In both cases,
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0 0.005 0.0I 0.015 0.02 0.0_ 003 0.035 0.04 0.045 0.05

Time (l_oncll)

(c)

Figure 7. Uncontrolled and controlled displacements at the point Pl without passive patch compo-

nents included in system matrices; (a) longitudinal uN(t, 3c, 0), (b) circumferential vN(t, _, 0), (e) transverse

wN(t, _:,0); -- (uncontroned), _ (controlled).
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thetimeintervalsarerestrictedto [0,.05]to illustratethesystcmdynamics.A comparisonindicatesthat
the inclusionofpassiveormaterialpropertieshasasignificanteffectonbothopenandclosedloopdynamics
duc to theadditionaldensity,stiffnessanddampingprovidedby thepatches.Hencefor manysystems,
it is necessaryto incorporatethesecomponentsto attainan accuratemodelanda fcasiblemodel-based
controlmethod(see[10,14]for experimentalevidencedemonstratingthenecessityof includingpassive
patchcomponents).Froma controlperspective,it is notedthat for thispatchconfiguration,transverse
vibrationsarereducedsignificantlythroughouttheshellwithattenuationlevelsof approximately80%at
thepointpl. Similar attenuation is noted in the longitudinal and circumferential components. The spatial

nature of the uncontrolled and controllcd shell in this regime is indicated by the rms values along the axial

line L1 and circumferential line L2 as plotted in Figure 9. These plots illustrate that in spite of the persistent

exogenous force, significant attenuation is attained in all components of the displacement.
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Figure 8. Uncontrolled and controlled shell displacements at the point pl with passive patch compo-

nents included in system matrices; (a) longitudinal uN(t, _, 0), (b) circumferential vN(t, 2c,#), (e) transverse

w N (t, _, _); -- (uncontrolled), -- (controlled).
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Figure 9. Root mean square (rms) displacements with passive patch components included in system; (a)

axial line L1 and (b) circumferential line L2; -- (uncontrolled),---- (controlled).

Example 4.

This final example demonstrates that the performance of the controller is not degraded by a larger numbcr

of frequencies in the exogenous disturbance and hence structural response. In this case, we employed

q_ (t) = qn (t) -- 50 [sin(3207rt) + sin(440rt) + sin(6007rt) + sin(6607rt) + sin(8201rt)]

so that the exogenous disturbance has five frequencies ranging from 160 Hz to 410 Hz.

The closed loop solution computed using the feedback law (5.4), with the five frequencies included, is

compared with the uncontrolled solution in Figure 10 and 11. The applicability of this law on the time

interval [0, .05], which is one half the fundamental period of the 330 and 410 Hz force components, is due to

the trigonometric nature of these components. The temporal trajectories at the point Pl reflect the multiplc

frequencies in the exogenous disturbance and illustrate that the feedback law (5.4) is highly effective for such

broadband responses. This observation is reinforced by the rms plots in Figure 11 which indicate significant

reductions along the lines Lt and L2.

The voltages given by (5.4) for patch pairs 1-6 are plotted in Figure 12 (the outputs from the remaining

patch pairs arc identical due to symmetry). Due to the axial symmetry of the transverse force _,_, the voltages

to patch pairs 1 and 3, 4 and 6 are nearly identical. It is also noted that the voltages to the central patch

pairs 2 and 5 are larger than those to surrounding pairs to accommodate the larger axial force distribution

delivered to the shell center. The predominance of the circumferential force near 0 = 0, r leads to larger

voltages to patch pairs 1-3 than 4-6. A comparison of the voltages to the inner and outer patches in each

pair first illustrates that the voltages are nearly diametrically out-of-phase which leads to the generation

of significant bending moments (see (2.5)). As indicated in Figure 13, the voltages also exhibit magnitude

differences and hence also generate inplane forces in addition to the bending moments. The small magnitude

of the inplane voltages, as compared with the total voltages plotted in Figure 12, illustrates the degree to

which bending motion dominates inplane motion for this force configuration. Finally, it should be noted

that the voltages to the patches are less than 80 V rms which is physically reasonable for patches having

the specified thickness. The combination of these effects provides the controller with significant vibration

attenuation capabilities for shell systems excited by general inputs.
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Figure 111. Uncontrolled and controlled shell displacements at the point Pl; (a) longitudinal uN(t, _c,_), (b)

circumferential vN(t, _:, 0), (c) transverse wN(t, Sc,#); -- (uncontrolled), _ (controlled).
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(uncontrolled),- (controlled).
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6. Conclusions. This work summarizes issues concerning the formulation and numerical implemen-

tation of a PDE-based LQR control method for thin cylindrical shells with surface-mounted piezoceramic

actuators. From a physical pcrspcctivc, such actuators are popular since they are lightweight, relatively

inexpensive and provide broadband control inputs. When mounted in pairs on a cylindrical shell, they can

be used to generate both inplane forces and bending moments which provides the capability for controlling

the coupled longitudinal, circumferential and transverse vibrations of the structure.

Controller design for thin cylindrical shells is significantly more difficult than for plates or beams due

to the complexity of the structures and the inherent coupling of component displacements due to curvature.

The models, numerical methods and control laws must incorporate this coupling to be fully effective in

applications involving shell-like structures.

In this work, Donnell-Mushtari equations modificd to incorporate passive and active patch contributions

were used to characterize the shell dynamics. This model incorporates the primary coupling mechanisms

while remaining sufficiently simple to permit initial analysis of the control methods. As detailed in [10, 15,

21, 26], the model can be directly extended to attain higher accuracy if the application warrants.

A Galerkin method utilizing bases constructed from tensored Fourier polynomials and modified cubic

splines was used to approximate the system dynamics. As discussed in [1, 20], an important issue when

approximating shell dynamics concerns the development of methods which avoid shear or membrane locking.

One manifestation of locking is the existence of model dynamics which are incorrectly approximated by

the numerical method. The use of a numerical method which exhibits locking can lead to a loss of control

authority and potential controller destabilization if the approximations are sufficiently inaccurate. As detailed

in [i2], the Calerkin method employed here avoids locking and provides highly accurate approximate solutions

with moderate discretization levels.

The LQR control method discussed here accommodates the unbounded input operators due to the

discrete nature of the patches. A well-posedness and convergence framework is obtained through the abstract

formulation of the control problem in terms of sesquilinear forms and associated linear opcrators. Because

the LQR method requires full state knowledge for computation of control voltages to the patches, it cannot

be directly implemented in experiments. It does, however, provide a means for quantifying optimal patch

capabilities and performance and a setting in which to investigate questions concerning patch placement,

number, et cetera. It also provides the system and input matrices necessary for later construction of a state

estimator and compensator which can be experimentally implemented [10].
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The numerical examples demonstrate the performance of the method for a variety of exogenous dis-

turbances. Specifically, they illustrate that through the incorporation of coupling mechanisms in the PDE

model and hence controller, optimal patch voltages are determined which significantly attenuate all three

components of the shell displacement. Furthermore, by modeling the global shell dynamics and patch inter-

actions through coupled PDE and constructing the control laws in terms of these PDE, significant reductions

in both transient and periodic displacements arc obtained throughout the shell, including regions which are

devoid of patches. This illustrates the optimal attenuation possible for the given patch configuration and

operating conditions.

An important issue which lies beyond the scope of this paper concerns thc optimal number, size and

placement of patches for a given set of operating conditions. These issues transcend the specified control

method described here and must be addressed when designing any piezoceramic-based control method for

the system. The advantage of the PDE-bascd method for addressing these problems lies in the incorporation

of basic physical principles in the models and the utilization of these principles in the control laws.
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